57 research outputs found

    Intersymbol and Intercarrier Interference in OFDM Transmissions through Highly Dispersive Channels

    Get PDF
    This work quantifies, for the first time, intersymbol and intercarrier interferences induced by very dispersive channels in OFDM systems. The resulting achievable data rate for \wam{suboptimal} OFDM transmissions is derived based on the computation of signal-to-interference-plus-noise ratio for arbitrary length finite duration channel impulse responses. Simulation results point to significant differences between data rates obtained via conventional formulations, for which interferences are supposed to be limited to two or three blocks, versus the data rates considering the actual channel dispersion

    On power line positioning systems

    Get PDF
    Power line infrastructure is available almost everywhere. Positioning systems aim to estimate where a device or target is. Consequently, there may be an opportunity to use power lines for positioning purposes. This survey article reports the different efforts, working principles, and possibilities for implementing positioning systems relying on power line infrastructure for power line positioning systems (PLPS). Since Power Line Communication (PLC) systems of different characteristics have been deployed to provide communication services using the existing mains, we also address how PLC systems may be employed to build positioning systems. Although some efforts exist, PLPS are still prospective and thus open to research and development, and we try to indicate the possible directions and potential applications for PLPS.European Commissio

    Analysis performance of wavelet OFDM in mobility platforms

    Get PDF
    Wavelet orthogonal frequency division multiplexing (OFDM) is one of the medium access techniques recommended by the IEEE 1901 working group for broadband communications over electrical networks, and is under consideration for IoT applications. This standard provides a flexible architecture supporting integrated access, smart grid, building, in-home, and mobility platform (vehicle) applications. Wavelet OFDM is a filter bank multicarrier system based on the extended lapped transform, in which the transmitting and receiving filters are obtained from a waveform provided by the standard. In this paper, we explore system performance when other waveforms are employed, studying the trade-off between stopband attenuation and transition band width. Furthermore, an alternative and more efficient way of obtaining the theoretical expressions of the achievable data rate is shown, assuming realistic power line communication noise other than additive white Gaussian noise. To demonstrate the capabilities of wavelet OFDM, the results of simulation of the symbol error rate and the data rate in several systems in platform scenarios (in-vehicle and in-aircraft) are shown.Comunidad de MadridUniversidad de Alcal

    A novel parametrization of α-spline functions: application to digital filter design

    Get PDF
    α-spline functions, which are a generalization of conventional B-splines, are defined with several parameters which provide more flexibility in terms of the variety of shapes that the functions can adopt. Because of this feature, the α-spline spline functions have shown improvements in the performance of several applications, including the design of digital filters. This article proposes a novel parametrization to generate new families of α-spline functions that allows a more efficient control of the shape of these functions. Different combinations of parameters are presented, and a detailed analysis of the properties of the new functions is carried out. In addition, the new α-spline functions are applied to the design of digital filters, providing an appropriate design procedure. The characteristics of the new filters are analysed and compared with previous design techniques, demonstrating the remarkable superiority of their performance

    A novel scheme of multicarrier modulation with the discrete cosine transform

    Get PDF
    In this work, we derive a novel multicarrier modulation based on the Type-I even discrete cosine transform (DCT1e), which includes new procedures to carry out both the channel estimation and the signal reconstruction. By using a small number of training symbols, we achieve an accurate estimation of the channel's impulse response (CIR) using a novel mirror, replicate and add (MIRA) procedure. The proposed scheme does not require knowing the length of the CIR and is valid even in the presence of spectral nones. We provide the theoretical results that guarantee the validity of the developed technique. After the estimation process, the transmitted symbols are also reconstructed by means of the DCT1e using the same novel MIRA scheme. The conditions that ensure a perfect reconstruction in the absence of noise are also provided in this case. Numerical simulations illustrate the excellent behaviour of the proposed approach, both in terms of channel estimation and recovery of the transmitted information.Ministerio de Economía y Competitivida

    A Generalized Window Approach for Designing Transmultiplexers

    Full text link
    This paper proposes a computational, very efficient, approach for designing a novel family of M-channel maximally decimated nearly perfect-reconstruction cosine-modulated transmultiplexers. This approach is referred to as the generalized windowing method for transmultiplexers because after knowing the transmission channel a proper weighted sum of the inter-channel and inter-symbol interferences can be properly taken into account in the optimization of the window function, unlike in other existing windowing techniques. The proposed approach has also the following two advantages. First, independent of the number of subchannels and the common order of the subchannel filters, the number of unknowns is only four. Second, the overall optimization procedure is made considerably fast by estimating the above-mentioned sum in terms of two novel measures, namely, the signal to inter-symbol and the signal to inter-channel interferences, which are very easy to evaluate. Furthermore, when the transmission channel is not considered in the design, a table is provided, which contains the parameters for designing the prototype filter directly by using the windowing method without any time-consuming optimization. When comparing the resulting transmultiplexers with the corresponding perfect-reconstruction designs (the same number of subchannels and same prototype filter order), the levels of interferences are practically the same. However, when the system is affected by a strong narrowband interference, the proposed transmultiplexers outperform their PR counterparts. Design examples are included illustrating the efficiency of the proposed design approach over other existing techniques based on the use of the windowing method

    DCT Type-III for Multicarrier Modulation

    Full text link
    In this paper we propose the use of Discrete Cosine Transform Type-III (DCT3) for multicarrier modulation. There are two DCT3 (even and odd) and, for each of them, we derive the expressions for both prefix and suffix to be appended into each data symbol to be transmitted. Moreover, DCT3 are closely related to the corresponding inverse DCT Type-II even and odd. Furthermore, we give explicit expressions for the 1-tap per subcarrier equalizers that must be implemented at the receiver to perform the channel equalization in the frequency-domain. As a result, the proposed DCT3-based multicarrier modulator can be used as an alternative to DFT-based systems to perform Orthogonal Frequency-Division Multiplexing or Discrete Multitone Modulatio

    Embedded filter bank-based algorithm for ECG compression

    Get PDF
    In this work, two ECG compression schemes are presented using two types of filter banks to decompose the incoming signal: wavelet packets (WP) and nearly-perfect reconstruction cosine modulated filter banks. The conventional embedded zerotree wavelet (EZW) algorithm takes advantage of the hierarchical relationship among subband coefficients of the pyramidal wavelet decomposition. Nevertheless, it performs worse when used with WP as the hierarchy becomes more complex. In order to address this problem, we propose a new technique that considers no relationship among coefficients, and is therefore suitable for use with WP. Furthermore, this new approximation makes it possible to apply the quantization method toM-channel maximally decimated filter banks. In this fashion, the proposed algorithm provides two efficient and effective ECG compressors that show better ECG compression performance than the conventional EZW algorithm

    Intersymbol and Intercarrier Interference in OFDM Systems: Unified Formulation and Analysis

    Get PDF
    A unified matrix formulation is presented for the analysis of intersymbol and intercarrier interference in orthogonal frequency-division multiplexing (OFDM) systems. The proposed formulation relies on six parameters and allows studying various schemes, including those with windowing in the transmitter and/or in the receiver (called windowed OFDM systems), which may add cyclic suffix and/or cyclic prefix (CP), besides the conventional CP-OFDM. The proposed framework encompasses seven different OFDM systems. It considers the overlap-and-add procedure performed in the transmitter of windowed OFDM systems, being jointly formulated with the channel convolution. The intersymbol and intercarrier interference, caused when the order of the channel impulse response is higher than the number of CP samples, is characterized. A new equivalent channel matrix that is useful for calculating both the received signal and the interference power is defined and characterized. Unlike previous works, this new channel matrix has no restrictions on the length of the channel impulse response, which means that the study is not constrained to the particular case of two or three data blocks interfering in the received signal. Theoretical expressions for the powers of three different kinds of interference are derived. These expressions allow calculating the signal-to-interference-plus-noise ratio, useful for computing the data rate of each OFDM system. The proposed formulation is applied to realistic examples, showing its effectiveness through comparisons based on numerical performance assessments of the considered OFDM systems
    corecore